BADLATION

EJExperiDoc®©2018

- There are three (3)
 primary categories of radiation that might be encountered in a field survey
 - Alpha
 - Beta
 - Gamma

Alpha

- Energetic helium ions
 - (atoms that have lost their electrons)
- Large size (compared to other forms of radiation)
- High charge
- Will not penetrate through much matter

• Beta

- Small size
- Will penetrate through more material than alphas
 - Generally can be stopped by a thin piece of metal

• Gamma

- High energy light
 - The most penetrating of the radiation types
- Very high energy gammas can penetrate through several centimeters of lead

Roentgen

• The unit of measure for X or gamma radiation in air.

Rad

 The unit of measure for radiation energy transferred to an absorbing tissue.

Rem

• The unit of measure which represents the risk associated with the radiation exposure.

- TLD:
 - Thermoluminescent Dosimeter
 - A device to measure Beta and Gamma exposure.

EJExperio de © 2018

BADGE DOSIMETER

- Gieger-Mueller Counter :
 - A device to measure Beta and Gamma exposure.

- Curie:
 - 2,200,000,000,000 (2.2x10¹²)
 - Disintegrations per minute (dpm)
- CPM:
 - Counts Per Minute
 - (Also known as the amount of disintegrations per minute (dpm))

• Inverse Square:

$$IP = I_{I} \left(\begin{array}{c} d_{I} \\ \hline d_{2} \end{array} \right)^{2}$$

A radioactive source with an activity of 10 μ Ci (microCuries) has a half-life of 100 days and gives a reading of 100 millirems per hour (mrem/hr) at 4 meters on a Geiger-Mueller counter.

What dose rate would you receive if you were 2 meters from the source?

A radioactive source with an activity of 10 μ Ci (microCuries) has a half-life of 100 days and gives a reading of 100 millirems per hour (mrem/hr) at 4 meters on a Geiger-Mueller counter.

What dose rate would you receive if you were 2 meters from the source?

A radioactive source with an activity of 10 μCi (microCuries) has a half-life of 100 days and gives a reading of 100 millirems per hour (mrem/hr) at 4 meters on a Geiger-Mueller counter.

What is the activity of the source after 100 days?

ElExperiDoc®©2018

ALARA

Always Lie About Radiation Accidents

ElExperiDoc®©2018

Maintain Exposure ALARA

As

Low

As

Reasonably Achievable

EJExperiDoc® © 2018

- One of four things may happen when radiation strikes a cell:
 - 1. The radiation may pass through the cell without doing any damage

- One of four things may happen when radiation strikes a cell:
 - 2. The cell may be damaged but repairs itself

- One of four things may happen when radiation strikes a cell:
 - 3. The cell may be damaged so that it not only fails to repair itself, but reproduces in damaged form over a period of years
 - Incompletely or imperfectly repaired cells can lead to:
 - Delayed health effects
 - Cancer genetic mutations
 - Birth defects

- One of four things may happen when radiation strikes a cell:
 - 4. The cell may be killed
 - Problems will occur if so many cells are killed that the body cannot properly function

Chronic Exposure Risk

- A normal U.S. citizen has a 25% risk of cancer.
- 1 Rem increases risk to 25.03%
- 100 Rem increases risk to 28%.

Background Radiation

- Unavoidable
- Comes from cosmic sources & earth materials
- Averages .01 .02 mR/hr gamma in the USA

Exposure Limits

- U.S. EPA Action Level:
 - 1 mR/hr gamma above background
- OSHA
 - 5 REM/year
- NRC
 - 5 REM/year

Exposure Reduction Mechanisms

- TIME
- DISTANCE
- SHIELDING

Summary

- There are three (3) primary categories of radiation
 - Alpha
 - Beta
 - Gamma
- Definitions
 - Roentgen
 - Rad
 - Rem
 - TLD
 - Curie

- Inverse Square
- ALARA
- Radiation Exposure
 - Background Radiation
 - EPA Levels
 - OSHA Levels
- Exposure Reduction Mechanisms
 - TIME
 - DISTANCE
 - SHIELDING